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THE EQUATION OF AXISYMMETRIC BUOYANCY 
OSCILLATIONS IN AN IDEAL FLUIDt 

A. M. T E R - K R I K O R O V  

Dulgoprudny 

(Received 25 October 1999) 

A fourth-order linear partial differential equation is derived to describe axisymmetric oscillations of an ideal incompressible 
stratified fluid in a gravitational force field. Potential vortices and mass sources are distributed along the axis of symmetry. A 
class of steady solutions, which depend on three real parameters, is constructed in the linear approximation. The asymptotic 
behaviour of these solutions at short and long distances from the axis of symmetry is investigated. © 2000 Elsevier Science Ltd. 
All fights reserved. 

1. T H E  F U N D A M E N T A L  E Q U A T I O N  

The system of equations describing the axisymmetric motion of an ideal incompressible stratified fluid 
in a gravitational force field had the following form [1] 

i)u, + i)z Diz ~H 
~t ~ r  = - ' ~ r '  D(ru°)=0 (1.1) 

(1.2) 
g 2 

~"'r U (3Z~ D=.~t  +pr ~r  r Dr + ~ +  Dlnt~')=O' (1.3) 

2 2 
H =  p__. I u r  + v  e I-gz, N 2 = gP'(~) (1.4) 

p 2 p(~) 

where r, 0, ~ and t are independent variables: r is the distance of the point from the axis of symmetry, 
0 is the polar angle, ~ is the distance of a fluid particle in an equilibrium position from a fixed horizontal 
plane, t is the time, the cartesian coordinate z is the dependent variable, ~r and ~0 are the radial and 
peripheral velocities of a fluid particle, p is the pressure, g is the acceleration due to gravity, p(z) is the 
density of the particle in an equilibrium position and N is the Brunt-Vais~il~i frequency. 

If the medium i,; an ideal gas, we will confine ourselves to the range of Brunt-Viiisalii frequencies, 
when acoustic oscillations are insignificant compared with buoyancy oscillations. It has been shown [1] 
that with this assumption the system of equations again has the form (1.1)-(1.3), but relations (1.4) 
become 

a 2 2 2 
u ,  +u e t-gz, N2 = ga'(~) ~ = c p / c  u 

H = ~ - 1  ~ 2 x a ( ~ ) '  

where a is the speed of sound and lna(z) is the entropy of a gas particle in equilibrium. 
The equation of conservation of mass (1.3) is easily written in divergent form 

/) 
~(rUrZq)+ ~t (r ~ ) =0 (1.5) 
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If we put 

1 ao~ z=g+w=g+- 
r ~r 

~z " °~2c° r2 (1.6) 
"'~=Q(;' "-~-~-D" ":T 

where Q(~, t) is an arbitrary function, Eqs (1.5) will be satisfied and it follows from (1.6) that 

Ur= r ' Z=~+"~'u '  Ac°=lQ-a-~)II+ ~-~J (1.7) 

It follows from the second equation of (1.1) that u0 = y(~)/r, where the arbitrary function 2rt2((~) is 
equal to the circulation of the velocity vector around a simple contour in the plane ~ = const. 

Eliminating the function H from Eqs (1.1) and (1.2) and using equalities (1.6) and (1.7), we obtain 
the equation 

tgJ )  : °  '> 

2. THE STEADY EQUATIONS 

In the steady state, it follows from Eqs (1.5) and (1.1) that 

u,. Q(; ) / °~z~- '  -H(r, ; ) =  g;+ Q2(;)ltiz~l¢~z~-2 
: r t ~ J  ' - 2"7"; r - tTr)  t ~ J  

where Q(~) is an arbitrary function. If Q = 0, then 

z=~  2N2r 2 

In what follows we will confine our attention to the case when 

y(~) = const, Q(~) = const * 0 

Substituting expressions (2.1) into Eq. (1.2) and making the change of variables 

r2 2QR N.Q. [1 + ~ _  
= N ' z = ~ + a W ,  iX= 4g[, 

we obtain a non-linear equation 

LW + R -~ + F W - 0  

~2W W+ Q (32W Lw=-~r+ 7-b-~C-~ 

(~W 

~W 

igW 

J+ 

(2.1) 

(2.2) 

(2.3) 
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Q 2 ~W a 3W 2 ct ~W 2 

3. S O L U T I O N  O F  T H E  N O N - L I N E A R  E Q U A T I O N  I N D E P E N D E N T  OF 

If the function W is independent of 4, Eq. (2.3) becomes 

: w  w+ ! +d w] =o, ) 
' t : - t J 

The solution of Eq. (3,1) as a series in inverse powers of R is 

W =  ~, Ck • -~ - ,  c I = - i ,  c 2 = 0 ,  c a = 2  
k=l 

k 
c k + I~ ~ (i - l)(k - i + l)Ci_lCk_i_l + (k - l)(k --2)Ck_ 2, k >~ 4 

i=2 

c4 = l~, Cs =-24 .... 
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(3.1) 

4. S O M E  C L A S S E S  OF S O L U T I O N S  OF T H E  L I N E A R  E Q U A T I O N  

An exact solution for the non-linear equation (2.3) is difficult to find. Hence forth we will confine 
ourselves to investigating the linear equation. Dropping the non-linear terms in Eq. (2.3), we obtain 

L W + R  -I = 0  

A solution of Eq. (4.1), independent of the variable ~, has the form 

(4.1) 

W0(R)= 7 s i n ( R - y ) d y = _ s i n R C i ( R ) _ c o s R ( 2 _ S i ( R )  ) 
e Y 

(4.2) 

The following as)anptotic formulae hold 

W o ( R ) = - ( R I n R + 2 + ( I - T ) R ) + o ( R  ) .as 

Wo(R )= ~ (_l),,+j 2"n! 
n=0 R 2n+l 

as R ~ + * *  

R - ~ + 0  

where )' is Euler's constant; the last formula is obtained by integration by parts in (4.2). 
The general solution of Eq. (4.1) has the form W = W0 + W1, where W1 is a solution of the 

homogeneous equation LW1 = 0. 
We will seek a class of solutions of this equation in the form 

W I =(oe ~;, ~ > 0  

To determine the function co, we obtain the equation 

~2~ _ Q~, ( N 2 ) ,9R2 +~--~o~=0..=~-fft-~--X. 
which is a special c~Lse of Coulomb's equation [2]. There is a well-known integral representation of its 
solutions 
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Fo(rl, R) + iGo( n, R) = iCffo t (rOe -in ~ e-'t-in(t + 2iR)indt 
0 

Co2 (n) = 2~-rl(e 2ml - 1) -I 

containing regular and irregular Coulomb wave functions of zero index. 
The regular Coulomb function may be expressed as the sum of a power series 

~(n, R) = Co(n) ~;, A,(n)e* 
k=[ 

The coefficients Ag are determined by a recurrence system of equations 

A I =1,  A 2 = n ,  

A3 i 112 
6 3 

k(k - I)A t = 2rlAt_ l - At_ 2, 

A4 =_11+ TI3 
9 18 . . . .  

The irregular Coulomb function has the form 

k > 2  

Go(n, R)= 

= ~ Fo( q, R)(In2R- I +27 + Re¥(l + in))+ Co(q)O(n, R) 
(.-i~(Tl.I 

(4.3) 

A s R  ~ o o  

For small R 

o(11, e)= ~. B,e k, Bo =l, ~ =0 
k=0 

k (  k - I ) B  k = 2 r lBe_  l - Bk_ 2 - 2 n ( 2 k  - I ) A  k, 

~___ +~2,  ~ =  9 9 .... 

k > 2  

F0(n, R)= Co(n)e 

Go (11, R) = 2nRCffo 2 (rl) (In 2 R - 1 + 27 + Re ¥(1 +/q)) + C O (TI) 

FoO l, R)+iGo(T I, R ) = i e x p ( - i ( R - n l n 2 R - f f ) ) x  

× ( l + ~ = l ( ( - l , n i l l ( l - i ~ ) 2 " " ( n - l - i n ' 2 ( n - i q ' ) l  a 
(2iR) n nt ) f  = arg L"(1 +/11) 

Confining ourselves to the principal terms of the asymptotic series, we obtain 

Go(n, R ) = cos( R - n ln 2 R - (l ), Fo(11, R) = sin( R - 2rl ln R - ¢y) 

It follows from relations (2.2) that we have constructed a class of solutions of the form 

z = ~ + (x(W 0 (R) + C I (11) cos R + C 2 (n) sin R) + 

+eZ;(C3(n)Fo(n, R)+ C,(n)G0(rl, e)) 

where Ck(rl) are arbitrary functions, the function Wo(R) is defined by (4.2), and Fo(rl, R) and Go('q, R) 
are Coulomb wave functions of zero index. 

where ~(x) is the logarithmic derivative of the Gamma function, and the function 001, R) may be 
expanded in a power series 
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We can similarly construct another class of solutions 

N 2N 
z=~+Wo(R)+q(~,)sinR+c2(~,)cosR+aex +i~ × 

~sa ff 
x(q(X)Fo(S(~.), e)+c40..)Go(S(X), e)), a(~. ) f l -~e - T 

More general classes of solutions may be obtained by integrating this expression with respect to the 
parameter ~,. 
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